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multi-valued Pad6 approximants: application to resonance 
problems and double wells 
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S 1 Vavilov State Optical Institute. Tuchkov F’ereulok 1. 199034 Saint Pemrsburg, Russian 
Federation 
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Abstract. Quadratic Pad€ approximarts are used to obtain energy levels both for the anharmonic 
oscillator x 2 / 2 - ~ ‘  and for the double well -x2/2+Ax4. In the first case, %e complex-valued 
energy of the resanances is reproduced by summation of the red terms of the permrbation 
series. The second case is treated formally as an anharmonic oscillator with a purely imaginary 
frequency. We use the expansion around the cenval maximum of the potential to obtain a 
complex perturbation series on the unphysical sheet of the energy function. Then, we perform 
an analytical continuation of this solution to the neighbouring physical sheet taking into account 
the supplementary branch of quadratic approximants. In this way we CM reconstruct the reo1 
energy by summation of the complex series. Such an unusual approach eliminates the double 
degeneracy of states that makes ordinary perturbadon theory (around the minima of the double- 
well potential) incorrect 

As a rule, perturbation series for energy levels in quantum mechanics have a zero radius 
of convergence. So, generalized summation methods that enable one to continue a Taylor 
series outside of its circle of convergence are commonly used. The classical example is the 
divergence of the perturbation series for the anharmonic oscillator (Bender and Wu 1973) 
and the summability of this series by Pad6 approximants (Loeffel ef a1 1969). 

In general, the energy levels represent the sheets of some multi-valued analytic function. 
The natural generalization of the ordinary Pad6 approximants to the case of multi-valued 
functions~is a quadratic Pad6 approximant (QPA) introduced by~Shafer (1974). The ‘diagonal’ 
QPA to the function f ( z )  is defined as a double-valued solution of a quadratic equation: 

(1) f r , v . i . x l ( ~ ) ~ =  (ZA)-’[-B f ( B 2  - 4AC)”’I 

A(z)f’(z)  + B ( z ) f ( z )  + C(z )  = o(zsN+’). 

where A ,  B and C are polynomials of degree N which satisfy 

(2) 

Thus, f m r . ~ . , ~ l ( z )  can be computed from the first 3 N  + 2 term of the Taylor expansion for 

This type of approximant is a special case of the generalized Pad6-Hemite approximant 
extensively studied’by Della Dora and Di-Crescenzo (1979). The coefficients of Pad& 
Hermite polynomials are aetermined by solving the system of linear algebraic ‘equations. 

f (z) .  
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Together with QPA, Common (1982) considered 'integral' and 'differential' PadGHermite 
approximants also having branch-point structure. 

The main branch of QPA rc-generates the Taylor expansion for the initial function up 
to the order 23N+1. It transfers to the second sheet at square-root branch points where 
the discriminant becomes zero. So, QPA can approximate both poles and cuts. Moreover, 
it can reconstruct to some extent the neighbouring sheets of the multi-valued function. 
Numerical results of Short (1979) indicate that QPA provides a practical method for the 
analytic continuation of a function from one Riemann sheet to another. 
h the first part of this paper we apply the QPA to the function having a cut on the positive 

real axis; this is the case when the ordinary Pad6 approximants fail to converge because of 
an accumulation of poles on the cut (Baker 1975). The function to be approximated is a 
complex energy of resonances, E = Er&iF/2, the plus sign corresponding to the incoming 
wave, and the minus sign Corresponding to the outgoing wave boundary conditions. The real 
part E, defines a position of the level, and r is its width. This approach is not completely 
new. Earlier, QPA were applied to the quasi-stationary states in a Yukawa potential (Sergeev 
and Sherstyuk 1984) and for a Stark effect in a hydrogen atom (Vainberg et a1 1987). More 
ingenious summation procedures such as the modification of Pad6 approximants (Reinhardt 
1982) and the Pad6Borel method (Franceschini et al 1985) were also considered for a 
Stark effect. 

Here, we illustrate the convergence of QPA for the oscillator with negative quartic 
anharmonicity 

V ( x )  = x2/2 - Ax4. (3) 

The expansion for the energy 

E(A) = n + 4 - $(2n2 + 2n + 1)A - i(34n3 + 51n2+ 59n + 21)A2 - . . . (4) 

where n is a quantum number, can be easily computed up to higher orders. To calculate 
a 'diagonal' QPA we use a fast algorithm based on a four-term recurrence relation (Mayer 
and Tong 1985, Sergeev 1986) and resembling the method of continued fractions for the 
diagonal Pad6 sequence. Two values of the QPA prove to be complex conjugate except 
where the parameter A is too small. We present the values of the QPA in table 1, retaining 
only the stable digits which are common for the three approximants [12,12,12], [13,13,13] 
and [14,14,14]. Our results appear to be slightly more accurate than the earlier numerical 
results of Drummond (1982) which are also given in table 1. 

Further, we note that the problem in question can be converted into a problem with the 
potential 

U ( x )  = g(x2/2 - x4) (5) 

by the scaling x + A-'/2x. The corresponding eigenvalues depending on a coupling 
constant are 

E(g) = g'kqf-1'2). (6) 

So, the large g limit is in a close relation with the small A asymptotics for the initial potential 
Vb). 

For positive g, ~ ( g )  gives the complex energy of resonances. The behaviour at large g 
is 

E(g) = (n + f)g'/' - z(2n2 +2n + 1) - i(34n3 + 51n2 + 59n + 21)g-'/' -. . . . (7) 
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Table 1. The double energy of resonances 2E (to make an easier comparison with previous 
results) obtained by summation of the perturbation series for P potentinl x2/2  - L4 by QPA. 

Ground state, n = 0 Fim excited state, n = I 

A Real Imaginary Real Imaginary 

0.01 0.98442767 0.0000000 2920282 16 0.000000 
0.02 0.967451 24 0.00000060 2.827 10262 0.00008903 

0.05 0.90067290 0.00669328 2448334 0.153 195 

0.1 0.794881 0.089412 219290 0.677 32 

0.2 0.728 82 0.27735 2.1652 1.3905 

0.5 0.7477 0.6100 2.41 2.51 

1.0 0.8297 0.9097 2.78 3.53 
2.0 0.964 1.260 3.3 4.73 
5.0 1.23 1.84 4.3 6.8 

0.96745124* 0.00000060n 

0.900 67n 0.00669' 

0.7949' 0.0894= 

0.7288' 0.2773' 

0.7477' O.610OL 

.~ 

The results obtained by Rung+Kuna inlegrations ( h m o n d  1982). 

When g is negative, & ( g )  represents the bound-state energy in a double-well potential having 
an asymptotic expansion in powers of (-g)-'lZ: 

(8) 

This is equivalent to the expansion studied by Damburg and Propin (1971). The index 
f denotes the parity of states. So, the levels are not defined without ambiguity by the 
series, and difficulties arise if we try to sum expansion (8). Bore1 resummation gives 
a complex result coinciding with the energy of a resonance k a quite different problem 
(Seznec and Zinn-Justin 1979). Here, we hope to overcome the difficulty related to double 
degeneracy of states by summation of expansion (7) for negative values of g (the parameter 
of the expansion will be i(-g)-'/'). Of course, the main branch of function (7) yields 
some unphysical complex eigenvalues if g c 0. We conjecture that this function can be 
analytically continued so that its second branch would give a real bound-state energy. 

For the potential (5). the analytic properties of bound and resonance energies as functions 
of the coupling constant were studied extensively by Shanley (1989). Using a complex 
scaling argument he found that the quantum levels in a potential and its inversion are 
intimately related. Here, we are going to exploit the fact that the energies of both types of 
states are. joined at branch points. So, one of these energies can be obtained from another 
energy by analytic continuation. 

As a justification for our conjecture, let us temporarily consider a much simpler prototype 
model with a pair of zero range potentials: 

U ( x )  = g[S(x - 1) + S(X + 1)l. (9) 

The equation for the energy function is 

k(i f tank) = 2g E ( g )  = k 2 / 2  (10) 
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(the odd parity states are not regarded here but they may be treated similarly). Because the 
energies both for resonances (g > 0) and for bound states (g < 0) may be obtained from 
the same general equation (10). they represent different branches of a single multi-valued 
function. 

E g < 0, it is convenient to rewrite equation (10) using a customary notation x = -ik: 

(11) E = --x 12. 

Equation (11) has a single real solution so only one bound state exists; its energy tends to 
-g2/2 when g + -00. 

It will be instructive to observe what happens to this ground-state energy as g moves 
along the real axis. When g becomes positive, the bound state smoothly transforms into 
a virtual state without any singularity. When g reaches a branch point gbr = 0,1392, this 
is the solution of the transcendental equation Zg + In(2g) + 1 = 0, the complex-conjugate 
energies of resonances arise as a result of a collision of two virtual levels and the energy has 
a squareroot singularity. At a large g limit, the problem is equivalent to the rectangular- 
shape potential with infinitely high walls, and the ground-state energy is z2/8. 

The zero-range model (9) is also an instructive example regarding the summability of 
the perturbation series. For negative g the energy behaves as 

2 x(1 +thx) = -2g 

( 2' + 28') e4$ - (2g' + 6g4)e69 - . . . g +  -OO. (12) 
g2 E(g) -- - g2& - 
2 

If we try to expand (12) in negative powers of g and then sum the expansion we obtain the 
wrong answer -g2/2 because we neglect exponentially small terms. 

In the opposite limit, the large g behaviour of the energy takes the form of an expansion 
in powers of 1 f g :  

The series (13) can be summed at large Igl to an analytic function. For negative g, the 
(6al solution (12) having an essential singularity at infinity can be obtained by analytic 
continuation of this function along a contour embracing the'point gbr. 

Now let us consider the double well 

V,w(x) = -x2/2+AX4 (14) 

that is related to the coupling problem (5) for negative g. We expect that the spechlll 
Riemann surface for problem (5) has a structure resembling the case of the zero-range 
model (9). So, treating (14) formally as a perturbed harmonic oscillator with a frequency 
w = i (w = -i would be equally suitable), we obtain the expansion on the unphysical sheet 
of the energy function: 

ELw(A) = (n + $)i - i(2n2 + 2n + l ) A  + g(34n' + 51n2 + 59h + 2l)iA' +. . . . 
The complex expansion coefficient can be easily found using the relation 

(15) 

ELw@) = iE(-iA) (16) 
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and expansion (4). Then, we calculate QPA. Numerical evidence is that the second 
(supplementary) branch of the QPA is rather close to the bound-state energy, but the results 
are not as perfect as in the case of the anharmonic oscillator. One of the reasons may be 
the fact that the actual expansion of the energy (from the perturbation theory around the 
minima of a double-well potential) has a pole at A = 0 

I &  4 5 .  E&,(h) = --+-( 2 n + 1 ) - ( 3 n 2 + 3 n + l ) h - - ( 3 4 n 3 + 5 1 n Z + 3 5 n + 9 ) h 2 - . . .  
16h 2 4 

(17) 

simply because the potential has no minimum when A = 0. QPA defined by equation (1) 
has no such pole unless A(0) = 0. 

In order to account for this pole, we also calculate a slightly modified QPA that is defined 
by equations (1) and (2) with the substitution A(z)  --f zA(z) .  n o  branches of QPA are 
given in table 2. The supplementary branch of QPA is proved to approximate the exact 
ground-state energy (found by numerical integration of the Schrodinger equation) to within 
an accuracy of about 0.01 unless the parameter h becomes too small or too large. The 
surprising result is that the red energy can be calculated by summation of the complex 
perturbation series (cf with the former resonance problem when the complex energy was 
obtained by summation of the real perturbation series). The accuracy is expected to rise 
if an essential singularity of the energy at I = 0 and the cubic-root singularity at h = 00 

could be incorporated by a further modification of QPA. 

Table 2. Summation of the complex perturbation series on the unphysical sheet of the energy 
 function for the double-well potential. Modified QPA [12,12,12] is presented. 

Main branch Supplemenlary branch 

I Real Imaginary Real rmgillq 

0.1 -0.06475096 0.51714256 -0.150 -0.020 
-0.1541' 

0.15 -0.08861672 0.53029358 0.004 0.002 
-0.0028 

0.2 -0.10873533 0.54357455 0.086 0.005 
0.0850' 

0.3 -0.14157605 0.56899343 0.192 0n00 
0.19604 

0.3288" 

0.4173" 

0.5148' 

0.6329y 

0.7230" 

0.8608* 

1.0564' 

0.5 -0.1903929 0.6140138 0.330 -0.005 

0.7 -0.227162 0.652653 0.425 -0.002 

1.0 -0.270343 0.702275 0.522 0.009 

1.5 -0.325 10 . 0.77056 0.625 0.017 

2.0 -0.3680 0.8274 0.698 0.010 

3.0 -0.435 0.9204 0.822 -0.024 

5.0 -0.532 1.062 1.056 -0,090 

Exact ground-state energy in a double well 
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The physical interpretation of the complex quantity obtained from the main branch 
of QPA remains unclear for us because there are no resonancm for such a problem. The 
only conjecture we can suppose is that it is very close to the energy of the broad unstable 
resonance in the modified inversewell potential 

The complex expansion around the central maximum invites further applications for 
other symmetrical potentials. Generally, the method may be useful for the cases when the 
energy has exponentially small terms neglected by perturbation theory. An example is the 
Killingbeck potential 

V ( r )  = - I / r + W r + 2 A 2 r 2  (19) 

having a finite asymptotic expansion for the ground-state energy 

E(A)=-1/2+3A (20) 

hut its sum was proved not to be identical to the energy when A < 0 (Killingbeck 1978). 
In one dimension, the simplest way to obtain the energy remains a direct integration of 

the Schrodinger equation. Nevertheless, the method may he of a practical importance for 
multi-dimensional potentials, where the coefficients of the perturhation expansion can also 
be exactly computed up to an arbitrary order. 
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